ArcGIS REST Services Directory Login | Get Token
JSON | SOAP | WMS

WGS84WM_Services/Ky_24K_NHD_Waterbodies_WGS84WM (MapServer)

View In:   ArcGIS JavaScript   ArcGIS Online Map Viewer   ArcGIS Earth   ArcMap   ArcGIS Pro

View Footprint In:   ArcGIS Online Map Viewer

Service Description: This high-level metadata data document will be supplemented with detailed regional metadata at a later date. The NHDPlusV2 is an integrated suite of application-ready geospatial data sets that incorporate many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). Interest in estimating stream flow volume and velocity to support pollutant fate-and-transport modeling was the driver behind the joint USEPA and USGS effort to develop the initial NHDPlus, referenced in this document as NHDPlusV1. NHDPlusV1 has been used in a wide variety of applications since its initial release in the fall of 2006. This widespread positive response prompted the multi-agency NHDPlus team to develop NHDPlus Version 2 (NHDPlusV2). The NHDPlusV2 includes a stream network (based on the 1:100,000-scale NHD), improved networking, naming, and "value-added attributes" (VAA's). NHDPlusV2 also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first broadly applied in New England, and thus dubbed "The New-England Method". This technique involves "burning-in" the 1:100,000-scale NHD and building "walls" using the national Watershed Boundary Dataset (WBD). The hydro-enforced digital elevation model (DEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. An interdisciplinary team from the USGS, USEPA and contractors, has found this method to produce the best quality NHD catchments using an automated process. The VAAs include greatly enhanced capabilities for upstream and downstream navigation, analysis and modeling. Examples include: retrieve all flowlines (predominantly confluence-to-confluence stream segments) and catchments upstream of a given flowline using queries rather than by slower flowline-by-flowline navigation; retrieve flowlines by stream order; select a stream level path sorted in hydrologic order for stream profile mapping, analysis and plotting; and, calculate cumulative catchment attributes using streamlined VAA hydrologic sequencing routing attributes. The VAAs include results from the use of these cumulative routing techniques, including cumulative drainage areas, precipitation, temperature, and runoff distributions. Several of these cumulative attributes are used to estimate mean annual flow and velocity as part of the VAAs. NHDPlusV2 contains a snapshot (2012) of the 1:100,000-scale NHD that has been extensively improved over the snapshot used in NHDPlusV1. While these updates will eventually be stored in the central NHD repository at USGS, this will not be accomplished prior to distribution of NHDPlusV2. NHDPlusV2 users may not make updates to the NHD portions of NHDPlusV2 with the intent of sending these updates back to the USGS. Updates to the 1:100,000-scale NHD snapshot in NHDPlusV2 should be sent to the USEPA as the primary steward. Purpose: The geospatial data sets included in NHDPlusV2 are intended to support a variety of water-related applications. They already have been used in an application to develop estimates of mean annual streamflow and velocity for each NHDFlowline feature in the conterminous United States. The results of these analyses are included with the NHDPlusV2 data. NHDPlusV2 serves as the sample frame for the stream and lake surveys conducted by the USEPA under the National Aquatic Resources Surveys program. A water-quality model developed by the U.S. Geological Survey (USGS) called SPARROW (Spatially Referenced Regressions on Watershed Attributes), can utilizes the NHDPlusV2 network functionality to track the downstream transport of nutrients, sediments, or other substances. NHDPlusV2 water bodies and estimates of streamflow and velocity are used in SPARROW to identify reservoir retention and in-stream loss factors. NHDPlusV2 climatic and land surface attributes can be used in SPARROW to identify potential factors in the delivery of nutrients from the land surface to streams. NHDPlusV2 data is also being used in select areas for a USGS Web-based application, called StreamStats. StreamStats provides tools to interactively select any point in the implemented areas, delineate watersheds, and to obtain streamflow and watershed characteristics for the selected point. NHDPlusV2 has been designed to accommodate many users' needs for future applications. NHDPlusV2 provides the framework and tools necessary to customize the behavior of the network relationships as well as building upon the attribute database, for which the user can assign their own data to the network.

Map Name: Layers

Legend

All Layers and Tables

Dynamic Legend

Dynamic All Layers

Layers: Description:

Copyright Text: NHD, DOW

Spatial Reference: 102100  (3857)


Single Fused Map Cache: false

Initial Extent: Full Extent: Units: esriMeters

Supported Image Format Types: PNG32,PNG24,PNG,JPG,DIB,TIFF,EMF,PS,PDF,GIF,SVG,SVGZ,BMP

Document Info: Supports Dynamic Layers: true

MaxRecordCount: 1000

MaxImageHeight: 4096

MaxImageWidth: 4096

Supported Query Formats: JSON, geoJSON

Supports Query Data Elements:

Min Scale: 500000

Max Scale: 0

Supports Datum Transformation: true



Child Resources:   Info   Dynamic Layer

Supported Operations:   Export Map   Identify   QueryDomains   QueryLegends   Find   Return Updates   Generate KML